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The general formulas, derived in a previous paper, are used to calculate the 
correlation functions of the hydrodynamic variables in the Rayleigh-B6nard 
system. The behavior of the correlation functions on a time scale slow compared 
to that of sound propagation is determined, using systematically nonequilibrium 
hydrodynamic eigenmodes. These (slow) eigenmodes of the linearized 
Boussinesq equations in the presence of gravity and a temperature gradient are 
the viscous and the visco-heat modes. They are determined for ideal heat-con- 
ducting plates with stick boundary conditions. The visco-heat modes are found 
to behave qualitatively different from those obtained with slip boundary con- 
ditions. Using these eigenmodes, the slow part of the correlation functions can 
be determined explicitly. On a small length scale, as probed by light scattering, 
we recover the same expression for the Rayleigh line as quoted in the literature. 
On larger length scales, as probed by microwaves, the coupling of gravity to the 
temperature gradient gives rise to a convective instability (heating form below) 
or to propagating visco-heat modes (heating from above). The corresponding 
correlation functions and the Rayleigh line are calculated and discussed. 

KEY WORDS: Rayleigh-B6nard system; fluctuations; correlation functions; 
viscous mode; visco-heat modes; Rayleigh number; convective instability; 
propagating modes; light scattering; microwave scattering; Rayleigh line. 

1. I N T R O D U C T I O N  

In a preceding paper (1) (hereafter referred to as I) we have derived the basic 
formulas for a unified treatment of the correlation functions of the 
hydrodynamic variables in a Rayleigh-B6nard system, i.e., a fluid between 
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two horizontal plates which is exposed to a stationary heat flux in the 
presence of a gravity field. We have shown that in the nonequilibrium 
stationary state the hydrodynamic fluctuations evolve on a slow and a fast 
time scale that are widely separated. In this paper we will investigate in 
more detail the fluctuations on the slow time scale. We will discuss in par- 
ticular the slow part of the hydrodynamic correlation matrix which follows 
from the full hydrodynamic correlation matrix by averaging over times that 
are large on the fast time scale, but small on the slow time scale. As we 
have pointed out in I, Section 8, it is only the slow nonequilibrium 
hydrodynamic modes, i.e., the viscous and the visco-heat modes, that con- 
tribute to the slow part of the correlation matrix; the contribution from the 
fast hydrodynamic modes, i.e., the sound modes, average to zero on the 
slow time scale. 

Our results for the slow part of the correlation matrix allow us to treat 
the following two problems as special applications: the Rayleigh line in a 
light-scattering experiment and the singular behavior of the correlation 
functions near the convective instability. 

In a light-scattering experiment one measures in principle the Fourier 
transform of the density-density correlation function/2) The light-scattering 
spectrum consists of three, well-separated lines: a Rayleigh line and two 
Brillouin lines. It is only the Rayleigh line that is generated by the slow 
part of the density-density correlation function. The Rayleigh line has a 
Lorentzian shape when the fluid is in thermal equilibrium. (3) 

For a fluid exposed to a stationary heat flux R o n i s e t a l .  ~4) and 
Kirkpa t r i cke ta l .  Is~ have shown that to first order in the temperature 
gradient the Rayleigh line is unaffected. Kirkpatrick, one of us (E.G.D.C.), 
and Dorfman (6) have also computed the Rayleigh line for large temperature 
gradients applying kinetic theory, as well as mode-coupling theory. In 
addition to an equilibriumlike Lorentzian part it has been found that there 
is also a non-Lorentzian contribution to the line, owing to mode-coupling 
effects, which is of second order in the temperature gradient. The total 
intensity of the Rayleigh line has a part that is inversely proportional to the 
fourth power of the wave vector. This behavior implies long-range den- 
sity-density correlations at equal times in real space that are absent in 
equilibrium. For a special scattering geometry, Ronis and Procaccia (7) have 
confirmed these results by using fluctuating hydrodynamics. The 
equivalence of the kinetic, the mode-coupling, and the fluctuating 
hydrodynamics approach has been shown in I. Since the spatial distances 
probed in a normal light-scattering experiment are small one can neglect 
the gravity field and boundary effects, as has been done in Refs. 6 and 7. 

Gravity does play an important role near the convective instability, 
however. In fact, for a fluid heated from below, it is the coupling of the 
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temperature gradient and the buoyancy force that causes the convective 
instability. (8) The onset of the instability and the quantitative details of the 
correlation functions near the instability depend much on the boundary 
conditions employed on the horizontal plates. Without specifying the boun- 
dary conditions, Za~tsev and Shliomis (9~ have been able to describe the 
singular behavior of the temperature-temperature correlation function near 
the instability qualitatively from fluctuating hydrodynamics. More explicit 
results for the density-density correlation function near the instability have 
been obtained by Kirkpatrick and one of us (E.G.D.C.) (1~ in the 
framework of kinetic theory. In that work it was assumed that the plates 
are ideal heat-conducting and--for the sake of mathematical sim- 
plicity-that the fluid obeys slip boundary conditions on the plates. 

In this paper we include the gravity field systematically in the com- 
putation of the correlation matrix, and we use the physically more realistic, 
though mathematically more complicated, stick boundary conditions. 
Whether gravity can be neglected or not turns out to depend on the dis- 
tance between the two points in which the correlation functions are com- 
puted. We show that there is a certain characteristic length below which 
gravity is negligible and rederive in this way the result for the Rayleigh line 
reported before. ~6'7~ For distances larger than  the characteristic length, 
however, gravity must be taken into account, regardless of whether one is 
close to the instability or not. 

The coupling of the gravity field to the temperature gradient can not 
only cause the convective instability, but, in the case the fluid is heated 
from above, also the propagation of some of the visco-heat modes. (8) If a 
light-scattering experiment were performed to measure these effects on the 
correlation functions, the wave vector would have to be small enough to 
probe the large length scale involved. For an incident laser beam with a 
wavelength in the regime of normal light this would require an extremely 
small scattering angle. (2~ A way to avoid this experimental difficulty could 
be the reduction of the frequency of the incident beam by scattering 
microwaves. In spite of  the technical problems to overcome in microwave 
scattering, we do compute the Rayleigh line for these very small wave vec- 
tors numerically for a few examples, taking also into account explicitly the 
boundary conditions. 

Our calculation of the slow part of the correlation matrix is based on 
the explicit solution of the eigenvalue problems for the slow nonequilibrium 
hydrodynamic modes, which are the eigenmodes of the linearized 
Boussinesq equations, (~) for ideal heat-conducting plates with stick boun- 
dary conditions. While the viscous modes are trivial to compute and do not 
crucially depend on the boundary conditions we find that the behavior of 
the eigenvalues of the visco-heat modes, considered as functions of the tern- 
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perature gradient, are qualitatively different from the results obtained by 
employing slip boundary conditions. A few graphs will illustrate the more 
complicated behavior. 

The plan of II is as follows: In Section 2 we summarize the basic 
equations derived in I, as they are relevant for the computation of the slow 
part of the correlation matrix. Then, in Section 3, we evaluate the slow part 
of the correlation matrix for points which are far away from the boun- 
daries, so that boundary conditions can be neglected. In particular, we 
compute explicitly the long-range mode-coupling contribution to the equal- 
time correlation matrix for distances in the regime probed in normal light. 
scattering experiments. In Section 4 we describe how the slow modes are 
computed for ideal heat-conducting plates with stick boundary conditions. 
In particular, the behavior of the visco-heat modes is then discussed in Sec- 
tion 5. In Section 6 we apply the methods developed in Section 4 to com- 
pute the asymptotic behavior of the correlation matrix near the convective 
instability in a mean field theory. Finally, we present in Section 7 the 
results for the dynamic structure factor for the Rayleigh line. We will end 
this paper with a discussion and four short Appendices which provide some 
auxiliary results used in the main text, and illustrate some more formal 
statements by examples. 

In the following paper III we will compute the fast part of the 
correlation matrix and the Brillouin lines of the light-scattering spectrum, 
thus completing our treatment of the properties of a fluid under a 
stationary heat flux by means of nonequilibrium eigenmodes. 

2. B A S I C  E Q U A T I O N S  

As in I we consider a simple fluid in a gravity field g = -gez  between 
two horizontal, infinite plates, located at z = -d/2 and z = +d/2, which 
have uniform temperatures TI and T2, respectively. We assume that the 
fluid has reached a n0nconvective stationary state. The macroscopic fields, 
i.e., the pressure p, the temperature T, and the flow velocity u, follow then 
from the nonlinear equations 

do 
'~ + gp = 0 (2.1a) 
dz 

d 2dT 
~zz -~z =0  (2.1b) 

u = 0  (2.1c) 
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with the boundary conditions p(d/2)= Pz, T(-d/2)= T~ and T(d/2)= T2, 
where P2 is the outside pressure. In (2.1), p=p(p, T) is the mass density 
and 2 = 2(p, T) is the thermal conductivity. 

We want to study the thermal fluctuations 

6a= cSr (2.2) 
6u 

around a given steady state solution a = (p, T, u) with p = p(z), T= T(z) 
and u = 0. In particular, we are interested in the correlation matrix 

M(rl,  tl ;r2, t2) = (6a( r l ,  tl) 6a(r2, t2))s~ (2.3) 

where the average is taken over the nonequilibrium steady state. In I we 
have shown how M(rl,  t l ; r2 ,  t2) can be computed from fluctuating 
hydrodynamics for all distances I r l - r 2 l  and time intervals I t l - t 2 l  of 
hydrodynamic order with the restriction that Iz 1-z21 does not exceed a 
length l 0 which is chosen such that the spatial variation of the average 
quantities can be neglected within a fluid layer of height lo. This means that 
10 must be small on the macroscopic length scale Lv~-[(1/a) (da/dz)]  -1 
where a(z)=a(p(z), T(z)) stands for the average quantity which varies 
most with position. 

We recall from I that the correlation matrix can be expressed in terms 
of the nonequilibrium hydrodynamic modes, i.e., the normal modes of the 
hydrodynamic operator which is obtained by linearizing the hydrodynamic 
equations around the steady state solution. From the properties of these 
modes follows that the behavior of M(r~, tl;  r2, t2) as function of t = t I - t2 
can be described on two widely separated time scales. In this paper we will 
be concerned with a detailed discussion of the temporal behavior of the 
correlation matrix on the slow time scale. We will denote by 
M(Sl)(rl ,  t~; r2, t2) the slow part of M(r~, tx; r2, t2) , i.e., the matrix obtained 
from M by averaging over times t 1 - - t  2 which are large on the fast time 
scale, but small on the slow one. On the slow time scale the contributions 
from the fast hydrodynamic modes, i.e., the sound modes, to M are 
averaged to zero, so that only the slow modes, namely, the viscous and the 
visco-heat modes, contribute to M (sl). 

In (I.7.1) 3 we have derived the eigenvalue equations for the viscous 

3 Equation numbers preceded by "I" are those from paper I (Ref. 1). 

822/40/3-4-5 
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modes (to be denoted by the index v) for a given horizontal wavevector 
ktl(k~, k~): 

G,k,,(z) (2.4) 

where v is the kinematic viscosity [ef. (I.5.14)] and ~ = k ~ - d Z / d z  2. 
Furthermore n is a discrete index to count the different modes. The eigen- 

R Z X R values Sv,k~l. and right-eigenfunctions ~,k,.( ) = (V u~,kll~ ) �9 e~ is the z com- 
ponent of the vorticity. The left-eigenfunction ~k~(z) obeys the same 
equation (2.4) and the normalization is given by Eci." (I.7.8a): 

f d/2 ~L* ~R dz = k~ 
d/2 V'klln v'kllm ~ (~ nm ( 2 . 5 )  

The visco-heat modes (to be denoted by the index 2) obey the coupled 
eigenvalue equations (I.7.4): 

\ - a g k ~  v ~  x \ v~k""(z)] =sak"" \~v~k""(z)] (2.6) 

where ~ is the thermal expansion coefficient and D r is the thermal dif- 
fusivity [ cf. (I. 5.14) ]. The components of the right eigenvecto r ( T~,k, n , v ~Rk,n) 
are the temperature and the z component of the transversal part of the flow 
velocity, respectively. The left eigenvectors T L v c ( ~,~,~, ;~,~ll~) follow from the 
adjoint eigenvalue problem of (2.6) in the scalar product to be defined in 
(2.7) below. We derive the left eigenvalue equations in Appendix A. The 
normalization is [cf. (I.7.8b)] 

f d/2 [vC. v e ~ 1 dv)~c'*k"~dv~'tm T c* T R ~dz=,~l~_,26~m (2.7) 
--d/2 h )"kiln 2'kllm k~ dz dz ~- x,k,~. ).,k,,mJ (2re) 

In (2.4) and (2.6) the values of the steady state quantities c~, dT/dz, v, 
and Dr  have to be taken in a reference point Rz on the z axis in the center 
of a fluid layer of height loWLy  to which z I and z 2 belong; their spatial 
variation can be neglected in this layer. The eigenvalue equations (2.4) and 
(2.6) to be solved in this paper, are equivalent to the linearized Boussinesq 
equations.(~,l 1 

Finally we will quote some basic formulas derived in I from which the 
slow part of the correlation matrix can be computed explicitly. Using 
(I.8.8) and that the contributions from the sound modes are averaged to 
zero on the slow time scale, we find that M(Sl)(rl, t l ; r2,  t2) can be 
expressed in terms of the following four scalar correlation functions: 
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and 

c2 
S(ru, z l, z 2 ; t) = k B - ~ "  27c dkll kll J0(kll rll ) 

x e-~-s,,"~Tfki,,(z I) Oz~,,,(z2) 

S'(r,,, Zl, z2; t) = 2- Z 2 

e -- SLk][ nt 

X k---TH T R k l , n ( Z I  ) WZ ,k [ ln (Z2)  

V(rll, zl,  z2; t) = kB" 2rr ~ dkll kllJo(kllrll) 
n 

e - S2,k[lnt 
x k---~l r v~,,.(z,) w;.,k,,.(z2) 

3(rlr'Z"Z2;t)=kBT'2~p f ;  dkllkllJo(kllrll) 

e -- s~"kllnt 

(2.8a) 

(2.8b) 

Here  r N = (x, y)  = (x~ - x2, y~ - Y2), rll = [rill, t = t~ - t2 > 0 and Jo(x) is the 
Bessel function of order  zero. Fu r the rmore  k B is the Bol tzmann  constant  
and Cp is the specific heat  at cons tant  pressure per unit mass. We recall 
f rom I that  S(r u, zl,  z: ;  t) is the e n t r o p y - e n t r o p y  correlat ion function. In 
(2.8a) the functions O~,k,,(z2) and w~,~,,(z2) are defined as 

T 2 
= L" _ m~ T~k,,,,(z2 ) Ok,kiln(Z2 ) T~,krl.(zz ) (2~) 2 A.m 

pCp S z,k;ln "J- S 2,kl[m 
(2.9) 

T L* ~ A"m 
w~"*H'(z2)=pV~'k"'(z:)--(2u)2 L s - ~  s V~k,,m(Z:) 

m 2,kiln 2,kl[m 

They  consist of a local equil ibrium par t  [first term on the r ight-hand side 
(r.h.s.) of (2.9)] and a mode-coupl ing  par t  [second term on the r.h.s, of 
(2.9)],  which vanishes in equil ibrium and gives rise to long-range 
correlat ions at  equal times, i.e., for t = 0. The  mode-coupl ing  coefficients 
A,m in (2.9) are defined as 

~d/2 T d T r T L *  u L* -I- L* "rL* 
An" = ~-d/2 p dz L ;,kit" ;~,ke~ V~,kl~. 12,kllm3 dz (2.10) 
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Using (I.2.9), (1.2.10) and (1.8.9) the components of IV](Si)(rl, tl; r 2, t2) 
for times t = t~ - t 2 > 0 are: 

M ~  ) = O, ""pTAAr(sl)---- 0 ,  M ~ I T  ) = gT1T ) 

M(;]  ) = O, =':T.U(~i) _-- erir(si)~ ---L f ~l)fll 
(2.11) 

(sl) _ h~Sl)(1 e~e~) + h(2~le~ez + h~sl)fllr N [~ull  - -  - -  A 

+ h(4S~e~ll + h(r z 

where fit = rli/rii and 

Z 2 
= s 

Cp 

- -  c g r l l  ' f~)-  Cp •z 2 0rll 

hlsl)- ~r~ rll 0rll ~zl ~z2, r 

1) D [- ~ 0 2 V 7  
0 +0z-  J 

(grll \cGrll rll/6qrll 0z2 

h~sl)(rll , zl, z2; t )=  --hTl)(rli, z2, zl; --t) (2.12) 

In (2.8), (2.9), and (2.12) the values of the steady state quantities must be 
taken in the reference point Rz. For the off-diagonal elements, not quoted 
in (2.11), and for times t < 0 one can use the symmetry relation 

M(m(r2, t2; rl ,  t l )= M(mr(rl, tl; r2, t2) (2.13) 

where the superscript T denotes the transposed matrix. 
Equations (2.4)-(2.13) are a self-contained set of equations for the 

slow part of the correlation matrix on which our further considerations will 
be based. 

3. C O R R E L A T I O N S  IN T H E  BULK FLUID 

As a first application we compute in this section M(sl)(rl, tl; r2, t2) for 
points r~, r2, the z coordinates of which not only obey the condition 
[z l -z2 l<~lo~Lv,  but which also stay away from the boundaries, i.e., 
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I z ~ - z z { ~ d  and l z ~ + z 2 l ~ d .  In this case we may treat the system as 
infinite also in the z direction. As reference point we choose the center of 
mass R~ = �89 + z2) and take the values of all the steady state quantities in 
the point R~. 

To calculate M (m we have therefore first to solve the eigenvalue 
equations (2.4)-(2.7) for a system that is infinite in the z direction. With the 
aid of these modes we will then compute the four scalar functions S, S', V, 
and Z, defined in (2.8)-(2.10). They determine the slow part of the 
correlation matrix, according to (2.11 )-(2.13). 

For an infinite system the eigenfunctions are proportional to plane 
waves e ~k':, where k~ can be any real wave number. The eigenvalues of the 
viscous modes [Eq. (2.4)] are 

where we have set 

S~,kllk._ = vk2 (3.1) 

k 2 = k~ + kz 2 (3.2) 

Using (2.5) the normalized right and left eigenfunctions are 

~ R t z ~ _ ~: L ( z ~ - kl------L-t e ~k~ 

Inserting (3.1) and (3.3) into (2.8b) yields 

e vk2t 
X e i k z ( z t -  z2) _ _  

dk H kflJo(kltrll) 

(3.3) 

(3.4) 

The elgenvalues of the visco-heat modes [Eq. (2.6)] are 

_ v + D  r 2 + v - D r  2 I  1 4~g d T k ~  u2 
S~_~,kj~k~ 2 k _ 2 k ~_ ( v - - D r )  2 dz k-gJ 

(3.5) 
The right eigenvectors follow from (2.6), while the left eigenvectors are 
obtained from Eq. (A.13) of Appendix A. Normalizing according to (2.7) 
the right and left eigenvectors are 

TR+,kll~(z)= + kll d T  1 ik~ 
- - -  (27 r )  3 / ~  d z  k 2 e 

(3.6) 

V~,krlkz(Z)= --+ (2rc)3/~klk Sz+_,kltk~-- D T  2 e ik~z 



440 Schmitz and Cohen 

and 

kll ~g 1 eik~ z 
TL+-&Ik=(Z) = - (27z) 3/2 s* - s*  s* - D r  k2 

2+,kllkz 2-,kllkz 2 +,kllkz 

kll 1 eiez ~ (3.7) 
v},,x,tk=(z) = (2~z)3/2 S*<lk =-  * 

$2'. ,kllk z 

respectively. 
Using the left eigenvectors we can easily calculate the mode-coupling 

coefficients Ak~;.+.k;;--- from (2.10) where, for consistency, the bounds of 
integration must be extended to infinity, and the value of (T /p) (dT/&)  is 
taken in the reference point Rz. After computing the functions 0~.+.<tkz(z2) 
and W~._+,kUk=(Z2) with the aid of (2.9), we find from (2.8a) for the 
entropy-entropy correlation function 

S(rll, zl, z2; t) 

21;  ;5 = kB cp dk z dkll kllJo(kllrll ) e&-(Zl z2) 
p T  (270 2 _ 

1 
•  

S+ - - S  
{~p [(s+ - vk 2) e-S+'+ (vk 2 - s_ ) e-s_t] 

_ ( d T ' ~  2 v k ~ ( e  . . . .  eT_~_' ' )}  (3.8) 
\ d z ]  v + D r k 2  \ s+ 

where we have written s_+ as abbreviation for the eigenvalues sx• The 
two terms in the curly brackets correspond to the local equilibrium part 
and the mode-coupling part, respectively. Similarly we find 

S,(rll,zi,z2;l)=kBCpdT 1 foo fo ~ p dz (2re) 2 co dkz  dkll kl lJ~ 

1 { e_S, ) x e i~(~ ~2)(s+_s ) k  2 (e s+~_ 

oT vk e s+t+vk2 s )} - -  - e s t ( 3 . 9 )  

v + D r  s+ s 

This quantity vanishes in equilibrium. 
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Finally 

V(r!l'z~'z~;t)=k~T 1 t~-'~) fo '~ dk~ dkll kltJo(kllrll ) 
-oo 

1 
X e ikz(zl z2) 

(s + --S__) k2]s 

x { [ ( s + - D r k  2)e ~+'+(Drk2-s )e "-'] 

+ c~gdz v+Drlc2\  -~+ 

We remark that the correlation functions (3,4) and (3.8)-(3.10) 
depend on z~ and z2 only via Iz~ - z21. 4 Carrying out the necessary differen- 
tiations, M/m(rl, t~;r2, t2) can now be determined with Eqs. (2.11) and 
(2.12). We will not write down the explicit expressions for M (m here, since 
they are rather lengthy. Instead we restrict ourselves now to small distances 
that are probed in normal light-scattering experiments; more precisely we 
assume that }r~-r21 is much smatler than the characteristic length 2 
defined by 

:~g dT  - 1./4 

2 =  v--D r -j~- z (3.11) 

(see footnote 5). In this case M(~)(rt, tt; r2, /2) simplifies and we will give 
the expressions for the noneqlailibrium part D~t)(r~, r2) of the equal-time 
correlation matrix M(~)(r~, t2;r2, t~) to expose explicitly the long-range 
behavior associated with the mode-coupling contributions. 

For I r~-r2J '~2 only the large wave vectors with k>>2 -1 contribute 

4 This implies that the slow part of the correlation matrix obeys the time-reversal symmetry 
M(~l)(rl, t~; r2, t2) = M(~l~(r~, ~l ;r t ,  t z )=  M(mr(r~, t2; r~, tl) in the bulk fluid. In equilibrium, 
time-several symmetry holds even for the whole correlation matrix M(ra, t~;r2, t2). As we 
will see in paper 1II it is violated for the fast part of M in the nonequilibrium steady state. 
Notice that time-reversal symmetry is always violated when boundary conditions are 
included since M depends then on zl and z2 separately. 
Of course, d should be much larger than 2, so that the infinite system approximation, made 
in this section, is justified. To give an idea of the magnitudes involved, we note that for water 
under normal conditions (12) and a temperature gradient of dT/dz = 50 K cm -1 the charac- 
teristic length is 2~0.03 cm, while typically d~O.1 cm. 
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significantly to the Fourier integrals in (3.8)-(3.10). In this regime the 
eigenvalues (3.5) can be approximated by their equilibrium values 

S + ~ S)~+,kllk z ~, vk 2 

S =--- S2_,kllkz,~DT k2 

Inserting (3.12) into (3.8)-(3.10), setting 
integrations we obtain 

S(rll, zl, z2; 0 )=  k~ cP 6 ( r l - r 2 )  
P 

kB 3 
~,~ Dr(v  + Dr) 32~ 

S , ( r N , z l , z 2 ; O ) = k B C p d T  1 1 
p dz v + D r 8 7 z  r 

k T 1 - 1 
V(FII, Z1, z2"O)= BT (--~-'~) 3 f dk e i l ' ' ( ~ ' - ' 2 )  

' kZk~ 

T d T  1 1 
+ k~ - c~g - -  r s 

p dz v ( v + D r )  28807z 

Furthermore, from (3.4) we get 

k T l f 
~'~(FN'ZI'Z2;O)= B 7  (-~)3 J 

(k>>)o -1) (3.12) 

t = 0 ,  and carrying out the 

dk e ik'(rt r2) 1 

(z,-z2) 2] 
p- / 

(3.13a) 

(3.13b) 

In (3.13) we have used r = Irl - r21 = [r~ + (Z 1 - -  Z2) 2.] 1/2. 
The mode-coupling contributions in (3.13) are those terms which are 

proportional to 1/(v + Dr).  They increase with distance r by simple power 
laws and vanish, of course, in thermal equilibrium, i.e., for dT/dz -- 0. The 
other terms in (3.13) are the local equilibrium contributions. It has been 
shown in I that the local equilibrium part A(rl, r2) = M L ' E ' ( r l ,  t2; r2, t2) of 
the full equal-time correlation matrix is short-range, i.e., proportional to 
O(r I - - r 2 ) .  Nevertheless the local equilibrium parts of V and Z, represented 
in (3.13) by Fourier integrals, cause long-range parts in the 
velocity-velocity correlation function Au,(rl, L.E. . r2) --- M.,  (rl, t2, r2, t2) when 
(3.13) is inserted into (2.11), (2.12). They arise because we have simply 
extrapolated our expressions for the slow part of the unequal-time 
correlation matrix for times t l > t  2 back towards equal times G = t 2 ,  
thereby ignoring effects on the fast time scale, i.e., the sound modes. This 
extrapolation causes an "initial slip" effect, (13) i.e., a deviation of the 
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extrapolated initial value at t~ = t2 from the true one. When also the con- 
tributions from the sound modes, to be evaluated in III, are added these 
long-range contributions to A,. all cancel, and one obtains A..(rl, r2)= 
ks(T/p)l  3(r l - r2) ,  as it should be. 

Computing finally the mode-coupling part D(S~)(rl, r2) of the equal- 
time correlation matrix, we use (2.11), (2.12), (3.13), and that 

h)~l~M~(rlj, zl, z~; O) 

T dT 1 1 
=kB-- ( j =  4) (3.14) p 7g -&z v(v + 07-) 192rc lj(zl -- z2, r) 1 ..... 

where 

( l l (z , r )= 1+ 7 r, 12(z,r)= 1 5 - 6  ~ - z 4 )  r2 r4 j r 

13(z, r ) = ( l  Z2 Z4 t', z(r2--zZ)l/2 (3 -[-Z~--~) 
- 2 7 + 7 )  14(z , r ) -  r2 

(3.15) 

to find explicitly for the nonvanishing elements of D(m: 

( z2) !(dry: 1 
D ~ ( r l ' r 2 ) =  p \ d z J  D r ( v + D r )  32rc 3 r (3.16a) 

D~lu)(rl' r2) = - k ~ T d T p  dz v + Dr  8 r c l  1 (ez +_zf) l r  r (3.16b) 

E(z) r~(s~)~, T__ dT 1 1 1 + 1 + 14e~e~ 
~u~ t-l, r2)=kB p ~g-~zv (v+Dr  ) 192~ 7 

( z2) 4z ] + 1 - 7  r r -  r(e~f+fe~) r (3.16c) 

where r = r 1 - r 2 ,  f = r/r, and the values of the steady state quantities must 
be taken in the reference point Rz=(1/2)(Zl+Z2) on the z axis. The 
correlation functions D ~  and D~u ) are independent of the gravity field and 
of, respectively, second and first order in the temperature gradient. D~ ) is 
proportional to the product g(dT/dz). D~Ir ) and D(.~ ) increase linearly with 
the distance r, while D ~  ~ decreases like r 1 in the regime considered here, 
i.e., Ir I --r2[ ,~2. The result for D ~  agrees with the expression in Ref. 6. 
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4. E IGENMODES FOR STICK BOUNDARY CONDITIONS 

Boundary effects may no longer be neglected when the correlation 
matrix M(sl)(rl, t l ; r2,  t2) is to be computed for the cases that one of the 
points rl ,  r2 lies close to a boundary or that the distance I z~-z21  
approaches the size of the system d. Fluctuations on the length scale 
[z~ - z2/~- d are particularly important near the convective instability since 
they become singular there. (9) But, as we will see in the subsequent sec- 
tions, there are also interesting phenomena on that scale away from the 
instability. 

We will restrict ourselves here to systems for which d ~ l o ~ L v  .6 Then 
we can take the values of all the steady state quantities at the reference 
point R z = 0 and neglect their spatial variation throughout the system. 

Usually it is assumed that the plates are ideal heat conductors 
and--for the sake of mathematical simplicity--that the fluid velocity obeys 
slip boundary conditions, i.e., the tangential components of the force 
density exerted by the plates on the fluid is zero. For these boundary 
conditions the slow part of the correlation matrix in a non- 
convective stationary state--near or away from the instability--is easily 
obtained from the results (3.4) and (3.8)-(3.10) when the domain of the 
continuous wave number kz is restricted to the discrete values kz = n(~/d)  
(n=1,2,3, . . . )  and ( 1 / 2 ~ ) ~ _ o o d k z e x p [ i k ~ ( z l - z 2 ) ]  "'" is replaced by 
(1/d)~2~=l{cos k , ( z l - z 2 )  4- ( - 1 ) "  c o s [ k , ( z l + z 2 ) ] } ' " .  [The + sign 
must be used in (3.4), while in (3.8)-(3.10) the - sign is correct.] T. R. 
Kirkpatrick and one of us (E.G.D.C.) have computed the density-density 
and the velocity-velocity correlation functions for slip boundary 
conditions.(1~ 

We will concentrate in the following on the more realistic--but also 
more complicated--stick boundary conditions which require that the flow 
velocity on the plates be zero. We first consider the viscous modes, which 
are easy to determine. The right and the left modes both obey the second 
order differential equation (2.4). The stick boundary conditions are 

~Rkll ~ = 0 (Z = +_d/2) (4.1) 

L The eigenvalues are therefore and identical conditions hold for ~,~t," 

s~.k,,, = v(k~ + k]) (n = 1, 2, ,...) (4.2) 

where we have set 
7~ 

kn = n - (4.3) 
d 

6 This  condi t ion  is real ized in a Rayle igh  B6nard cell which typical ly  has  a size of d =  0.1 cm, 

while L y e 6  cm for water  at  T =  300 K and dT/dz = 50 K cm 2. 
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Normalizing according to (2.5), the right and left eigenfunctions are 

with 

Z L Z kll~t)l/2(2~ ~,~,~(R )=~,kH~( ) - -27 I~(Z) (n=1,2,3, . . . )  (4.4) 

~cos k~z (n = 1, 3, 5,...) (4.5) 
In(z) = (sin k,z  (n = 2, 4, 6,..) 

Next we turn to the visco-heat modes. The right modes obey the 
system (2.6), while the left modes obey the adjoint system (A13). At this 
point it is convenient to introduce dimensionless quantities as follows: 

Putting also 

d 2 
a = kll d, an = s;..~,n v 

V 
P = - -  (Prandtl number) 

Dr  

R - c~g dT d4 (Rayleigh number) 
vD r dz 

(4.6) 

d2 an)(a2-~22) Wn(~) (4.7) 
On(~) = ( a  2 -- d~2 

so that, according to (2.6), T~k,n(z ) is proportional to On(~), the Eqs. (2.6) 
take the form 

(4.8) 

In Appendix B it is shown that the left eigenvalue problem has the same 
form, except that a ,  must be replaced by ~r*. Since the coefficients a, R, and 
P are all real, it follows that L and L v;.<r ~ Tak,n are proportional to W* and 
O*, respectively. Hence, using (2.7) we can normalize such that 

[~/2 [ 1 dWndWm P ] WnWm-~ [- OnO m d~=3nm (4.9) 
~--1/2 a 2 d~" d~ ~a~a 4 
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In this normalization, the eigenvalues and the components of the right and 
left eigenvectors of the visco-heat modes, expressed in terms of a,,, Wn(~), 
and O,(ff), read 

V 
S x,klL. = -~ an (4.10a) 

= T~k"n(z) c~gd2 a 2 (d) 
(4.10b) 

T[~k""(z) = -- (27z) 2 d (dTStz) d 2 a 2 69" 
(4.10c) 

(:) 
The right and the left eigenvalue equations for the visco-heat modes have 
now both been reduced to the eigenvalue equations (4.8). These have still 
to be supplemented by the boundary conditions 

On=O 

dWn 
Wn=0 - 0  

d~ 

(if= +__1/2) 
(4.11) 

The condition on On Which is essentially the temperature T R expresses 
the ideal heat conductivity of the plates; the two conditions on W,, which 
is the z component of the transversal part of the flow velocity u n (1) 

2,ki ln 

follow from the stick condition u R = 0  at z =  +d/2 together with 2,kl jn 
R __ V' U;.ke ~ - 0. 
In order to solve the eigenvalue problem (4.8), (4.11) we first eliminate 

O n between Eqs. (4.8) to obtain the sixth-order differential equation 7 

d2 Po-n)(a 2 d2 ~r,~)(a 2 - ff-~2~2 ) W,,(~)=RaZW,,(~) (4.12) 
a2 d~2 d~ 2 

The eigenvalue problem (4.12), (4.11) has been discussed by 
Chandrasekhar wl) for the special case of an = 0 in connection with the con- 
vective instability. Then (4.12) defines an eigenvalue problem for R at 

7 Hence the six boundary conditions (4.11 ) are indeed necessary and sufficient to define a well- 
posed eigenvalue problem. 
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given a. Here, we are interested, however, in the eigenvalues a,, for given a 
and R. We will now briefly sketch how the eigenvalue problem (4.12), 
(4.11) is solved. (ia'81 

From the symmetry of the problem follows that the eigenfunctions 
W , , ( [ )  possess a definite parity. We make the ansatz 

l ~ A f c o s q f i  (even) 
j =  1,2,3 (4.13) 

W(~) = ~ A ~ sin qfi (odd) 
j = 1,2,3 

where A L  and A ~ ( j =  1, 2, 3) are constants and the qj = qj(a) ( j =  1, 2, 3) ] 

are the three roots of the sixth-order equation 

(a 2 + q2 _ p a ) ( a  2 + q2 _ a ) ( a  2 + q2) = R a  2 (4.14) 

which lie in the right half of the complex plane, i.e., for which - n / 2  < 
arg qj ~ n/2, with a considered as a parameter. Functions of the form (4. l 3) 
are clearly solutions of (4.12) for any choice of the constants A/. Applying 
now the boundary conditions (4.11) yields a homogeneous system of 
equations for the constants. For the even eigenfunctions this system reads 

, ql q2 q3 
COS - -  COS - -  COS 1 E 

2 2 T 

~- ~ q3 sin f = 0 

(Q1 - o )  Q1 c o s  (Q2  - o-) Q2  c o s  -~- ( Q 3 -  o )  Q3  c o s  f 

(4.15) 

where we have set Qj = a 2 + q2 ( j  = 1, 2, 3). For the odd eigenfunctions one 
obtains a similar system with sin and cos interchanged. Nontrivial 
solutions of (4.15), and thus nonvanishing W(~), exist only when the deter- 
minant of the 3 x 3 matrix in (4.15), FE(r a, R), is zero. For fixed a and R 
the characteristic equation 

Fe(a; a, R ) = 0  (4.16) 

has an infinite number of solutions a. These are the eigenvalues of the even 
modes. Similarly one computes the eigenvalues of the odd modes by solv- 
ing the corresponding characteristic equation F~ a, R ) =  0. In this way 
one obtains all the eigenvalues 

a = a,,(a, R) (4.17) 
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where the discrete index n labels the modes for fixed a and R. We remark 
that o- n also depends on the Prandtl number P. However, we will not 
indicate this explicitly. 

In order to compute the eigenfunction Wn(~) corresponding to an, one 
inserts the three (complex) wave numbers qnj(a, R)=qi(a,) ( j - -1 ,  2, 3) 
into (4.13). If Wn(~) is an even eigenfunction, two of the three constants 
Anj(a, R)=Af(o-~) follow from (4.15). If Wn(~) is odd, one must use the 
equations corresponding to (4.15) for the odd modes to determine two of 
the three constants A~j(a, R) -- A~ After On(~) has been calculated from 
(4.7), one must determine the third constant from the normalization con- 
dition (4.9). This completes the computation of the eigenmodes for the 
eigenvalue problem (4.8), (4.11) of the visco-heat modes. 

Inserting Eqs. (4.2)-(4.5) and (4.10), with o-,, W~(~) and On(~) being 
computed in the way described above, into Eqs. (2.8)-(2.12) gives explicit 
expressions for M (~l). The actual calculation of the visco-heat modes with 
stick boundary conditions is complicated, howeven In particular, the 
characteristic equations [cf. Eq. (4.16)] can only be solved numerically. 
Therefore we will postpone the calculation of M (~1) for a number of cases to 
Sections 6 and 7, and mention first some general properties of the visco- 
heat modes. 

5. VISCO-HEAT MODES FOR STICK 
BOUNDARY CONDITIONS 
f 
In this section we will discuss the behavior of the visco-heat modes for 

stick boundary conditions and fixed reduced wave number a as a function 
of the Rayleigh number R. 8 We will illustrate the discussion by a few 
numerical examples. 

Before studying the exact eigenvalues an(R), it is useful first to con- 
sider a simple approximation, namely, the parabolic approximation. ~ 
This approximation describes the eigenvalues o- n reasonably well for many 
R, with the exception of one qualitatively and quantitatively important 
feature, that we will discuss below. 

5.1. Parabolic Approximation 

For the parabolic approximation of the eigenvalues an(R) we consider 
for fixed a the (R, a) plane. Then for each n, an(R ) is approximated by a 
branch of a parabola through three special points in the plane, that are 
exact solutions of the eigenvalue problem. These points are (0, any), 

8 W e  will suppress  the d e p e n d e n c e  of ~ .  o n  a in this  sect ion.  
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(0, rr,~/) and (R,c ,  0) where ~,~ and a,~/ are the eigenvalues of the nth 
viscous and heat mode, respectively, in equilibrium (when R = 0 ) ,  and 
R , c > O  is the solution of the equation ~r~(R)=0, considered by 
Chandrasekhar. (~) Expressions, which determine the dependence of ~,,~, 
a.H, and R,c  on the wave number a, are given in AppendixC. In 
parabollic approximation the eigenvalues are thus 

(Ynv 2r O'nH O'nv --  O'nH 

a~+(R) = 2 • 2 

x 1 -t (~--__~-~H) 2 R-f~cJ (n = 1, 2, 3,...) (5.1) 

We remark that relations of the form (5.1) are exact for the 
mathematically simpler slip boundary conditions, where ~;,~ = a 2 +n2~ 2, 
a,,H = (1/P)(a z + n 2zc2) and R~c = (a 2 + nZrc2)3/a 2 (16,10,s~ [cf. also Eq. (3.5) 
with k~ being replaced by k, = n(rc/d)]. 

The eigenvalues an+(R), as given by Eq.(5.1) in parabolic 
approximation, are analytic functions of R with no singularities except at 
the branch points (RnB, ~B), where RnB = - - (any-  ~nH)2Rnc/(4~r~vcrni~) and 
ane= (anv+ a,~)/2. We note that the functions a ,+(R)  are still continuous 
at R = R~B and that for R > R~B the approximate eigenvalues a~+(R) and 
~r~_ (R) are both real, while for R < R,B they are complex conjugate. 

5 .2 .  P r o p a g a t i n g  M o d e s  

A mode with a real eigenvalue is diffusive and decays exponentially. 9 
On the other hand, a mode with a complex eigenvalue propagates, while it 
is damped. (8) Both types of time evolution are physically possible for the 
nonequilibrium visco-heat modes, owing to the interplay of the buoyancy 
force, which is caused by the gravity field, and the driving force, which is 
caused by the heat flux. We have elaborated this elsewhere. (s) Propagation 
can only occur when the system is heated from above (R < 0), since then 
the driving force opposes the buoyancy force. Mathematically this follows 
directly from (4.8) since 0,, is real for R > 0, as is shown in Ref. 14 and in 
Appendix B. Experimentally, propagating visco-heat modes have been 
observed by Allain etal. ~5'17~ using forced-Rayleigh-scattering spec- 
troscopy. 

9 We assume that all the eigenvalues are positive, or have a positive real part. This is the case 
as long as the stationary state is stable (see beginning of next section). 
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5.3. Exact Results 

In order to discuss the behavior of the exact eigenvalues we have 
solved the characteristic equation (4.16) numerically for the first few even 
eigenvalues a = an(R) in a few examples. We have chosen the Prandtl num- 
ber P = 2 and the wave numbers a = 2, 4, 6, 8, and t0, respectively. The 
results are plotted in Figs. la-e. The thick lines denote the exact results, 
while the thin lines refer to the parabolic approximation, i.e., the curves 
1+, 1 - ,  3+,  3 - ,  and 5 -  as obtained from (5.1). The dashed lines 
indicate the real part of the complex eigenvalues. 

One recognizes from these figures that the parabolic approximation 
describes the eigenvalues reasonably well in wide parts of the (R, a) plane. 
Striking deviations occur, however, in the neighborhood of the so-called 
"crossing points" where parabolas of different order n cross. The exact cur- 
ves avoid the crossing when they are of equal parity. This is the important 
difference between the exact eigenvalues and the parabolic approximation 
mentioned at the beginning of this section. Modes with different parity can 

o=2 

3o.ooo -25ooo [2o.ooo [15oo0 '-1o.oco '?5000 

O" 

2c~ 

f35" 

< 

- -  3 *  

5- 

1+ 

3 -  

-~R 
1- 

(a) 

Fig. i. Eigenvalues a~(R) of the visco-heat modes for the first few even eigenmodcs as 

functions of R. In all five plots the Prandtl number P = 2. The horizontal wave numbers are as 

follows: Fig. |a, a = 2; Fig. Ib, a = 4; Fig. Ic, a = 6; Fig. id, a = 8; Fig. le, a = 10. The meaning 

of the various types of lines is: --, real eigenvalues (exact results); .... , real part of com- 

plex eigenvalues (exact); ---, real eigenvMues in parabolic approximation (5.1); .... , real 

part of complex eigenvalues (parabolic approximation). Notice that the exact curves avoid to 

cross ,  in c o n t r a s t  to the  p a r a b o l i c  curves .  
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Fig.  1 (continued) 
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Fig. 1 (continued) 
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cross without affecting each other. The advoidance of crossing is accom- 
plished in one out of two ways: For R ~> 0, when the eigenvalues are real, 
the two modes have to pass horizontally in the (R, ~r) plane, while for 
R < 0 they appear to pass always vertically since they can become complex 
(Fig. t). In the latter case the exact branch points may be shifted con- 
siderably away from the positions they have in parabolic approximation. In 
Table I we have listed the numerical values for the exact positions (RB, aB) 
of the branch points appearing in Fig. 1 and compared them with the 
values obtained in parabolic approximation. Those branch points, where 
the parabolic approximation fails badly in our examples are caused due to 
the crossing of the parabolas 3 + and 5 - ,  forcing the exact modes to pass 
vertically before this crossing point is reached. Thereby branch points are 
generated with values of Re much lower than those expected from the 
parabolic approximation, where the branch points are just the vertex point 
of the parabolas a3+(R). 

Moreover, pairs of new branch points appear, which frame certain 
"windows of propagation," such as the behavior near the crossing point 
(1 + ,  3 -  ) in the examples a = 8 and a = 10 shows. In Fig. 2 we have plot- 
ted a close-up of this window in the case a = 8. 

Because of the complications caused by the avoidance of crossing, one 
can order the eigenvalues only at fixed R. Orderings at different R cannot 
be uniquely connected through a branch point. 

5.4. M a t h e m a t i c a l  Behavior  near the  Branch Points 

We will end this section with a few mathematical remarks on the 
behavior of the eigenvalues and eigenprojections near the branch points, 
based on some theorems proven in Kato's book. (is) 

(i) Two eigenvalues a,(R) and am(R) which meet in a branch point 
(R0, %) can be represented by the Puiseux series (is) 

0"+ ( R )  = o" 0 __ ~ l ( R  - Ro) 1/2 q- ~2(R - Ro) -b ~ 3 ( R  - R o )  3/2 q- . . .  (5.2) 

in a neighborhood of Ro, where cq, c~2, c~ 3 .... are constants. Branch points 
are the only points where the eigenvalues ~r,(R) are not analytic functions. 

(ii) The eigenprojections ~, and Nm corresponding to a n and am, 
respectively (they are defined more explicitly in Appendix B) behave near 
R0 like 

~+ ( R )  = + ~ o ( R  - R o ) -  1/2 + �89 + - (5 .3 )  

where No is the total projection operator corresponding to ao and ~o is a 
nilpotent operator, i.e., S 2 = 0. Since N~ = ~_+ and N+ N = 0 it follows 
furthermore that ~+ ~0 = ~0~+ = ~0- 
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Fig. 2. Close-up of the "window of propagation" from Fig. ld. 

(iii) Combining (5.2) and (5.3) one sees that o+ ~+ + a ~_ ,  i.e., the 
nonanalytic part of the Jordan representation of the operator in (4.8) defin- 
ing the visco-heat modes, is continuous in R0. The merging of two modes 
in a branch point (Ro, 0o) gives rise to generalized eigenmodes that do not 
evolve exponentially with time ~, but like ze-~~ 

The proofs for Eqs. (5.2) and (5.3) given by Kato are mere existence 
proofs. Explicit expressions for the constants ~1 .... and the operators Xo 
and ~o can only be given when the details of the eigenmodes near the 
branch point are known. Therefore we illustrate the formal results in 
Appendix D for the case of slip boundary conditions, where all the quan- 
tities can be determined explicitly. 

From the above considerations follows that the integrands appearing 
in the correlation functions (2.8) (the sums over n being understood to be 
part of the integrands) are continuous functions of the Rayleigh number R 
in the branch points. Hence, the correlation matrix M (sl) is a continuous 
function of R away from the convective instability. M (~1) becomes singular 
at the instability point, because then one of the eigenvalues o,  vanishes, 
causing the mode-coupling contributions to (2.9) to diverge. In the next 
two sections we use the eigenmodes discussed here to study as examples the 
behavior of M (s~) near, but below, the convective instability (Section 6), 
and the Rayleigh line in the scattering of light for very small wave vectors 
(Section 7). 
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6. CONVECTIVE INSTABIL ITY 

The stationary state solution p(z), T(z), u = 0, around which the fluc- 
tuations are discussed here, is unstable when the corresponding 
hydrodynamic operator has an eigenvalue with a negative real part. (8,H~ In 
this case not every initial perturbation 6a(r, 0) of the laminar steady state 
will decay to zero as t ~ oo, but some will increase exponentially. The 
system responds to this hydrodynamic instability by performing a trans- 
ition to convective flow. In this section we will discuss the correlation 
matrix near the convective instability. 

The only hydrodynamic modes to become unstable are the visco-heat 
modes, since the viscous and the sound modes have a finite damping part 
for finite d which is proportional to the transport coefficients. In Appen- 
dix B we show for the visco-heat modes that Re an > 0 for all R ~< 0. Hence, 
convection can only occur when the fluid is heated from below (R > 0). 
Physically, the convective motion is caused by the buoyancy force which, 
for R > 0, supports the tendency of the hot and light fluid to go up and of 
the cold and heavy material to go down. (s~ 

The lowest value of R, for which the real part of one of the eigenvalue 
relations (4.17) vanishes, is the critical Rayleigh number Rc. We denote 
that branch of the eigenvalue relations whose real part goes first to zero as 
R increases, starting from R = 0, by cr(l)(a, R). From Eq. (B20) in Appen- 
dix B follows that Im cr(~)(a, Re) = 0, since Rc > 0. This is known as the so- 
called "principle of exchange of stabilities. ''(11~ The curve of marginal 
stability, R=R(~) (a ) ,  is therefore obtained by inverting the equation 
~r(l~(a, R) = 0. 

In order to compute R(1)(a) we take the characteristic equation (4.16), 
since the eigenfunction corresponding to the lowest eigenvalue has even 
parity. Putting a = 0 yields 

Fo(a, R)  - FE(0; a, R) = 0 (6.1) 

Equation (6.1) has still infinitely many solutions R = R n ( a ) .  The curve of 
marginal stability R = R(1)(a) is that branch on which the lowest R value is 
attained. The minimum of R(1)(a) is the instability point (ac, Re). Hence it 
is defined by the equations 

(dR 
(1)'~ 

d-a--a] . . . .  = O, R~ = R(l)(ac) (6.2) 

We remark that ac and Re. do not depend on the Prandtl number since 
Fo(a, R)  is independent of P. Numerical results for ac and Rc have been 
obtained long ago (see Ref. 11 and references therein). 
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After the instability point has been determined, we investigate next the 
behavior of the visco-heat modes close to the instability point. This will 
enable us to compute the correlation matrix in the limit where the 
instability is approached from below, i.e., as R--, Re_. 

Expanding ~(1) around (a~, R~) yields 

a(l)(a, R)= Fe I l - ~  + Aa ( a -  ac)a] -25 + " "  (R ~ R C " a~ac) 
ac A - ' 

(6.3) 

where 

(&r(l') A2= a 2 {d2R ~1') 
Fp = -Rc  \ 8---R-]~,,' ~ \---jaT2 ]~ c (6.4) 

and where (6.2) has been used. From (6.4) follows that A 2 is determined 
from the curvature of the curve R(1)(a) in the instability point. To compute 
Fe, lo one expands the characteristic function FE(a; a, R) to first order in ~: 

Fe(a; a, R) = Fo(a, R) + ~Fi(a, R) + "" (6.5) 

where F1 = (3FE/Oo)~=o . From (4.16) and (6.3) follows then 

F,=Fl(a~'Rc)  (c~F~ (6.6) 

Wesfreid eta/. (19) have computed the values of Fp and A 2 and verified their 
results experimentally by measuring the decay rate of the critical mode near 
the instability (i.e., the so-called critical slowing down) with the aid of for- 
ced-Rayleigh-scattering techniques. 

We need also the components of the normalized eigenvectors for a = a c 
and R =  Re, which we denote by Wc(~) and Oc(~). Since the instability 
point is not a branch point, H it follows from the discussion in Section 5d 
that Wc(~) and Oc(~) are analytic functions of ~. They can be determined in 
the manner outlined below Eq. (4.17). 

We can now compute the correlation functions near the instability 
according to Eqs. (2.8)-(2.10). For  R=Rc  the correlation functions 
diverge, since o(1)(ac, Rc)=0 .  As R---,Rc , their magnitude is dominated 
by the eigenvalues a(1)(a, R) in the vicinity of the instability point, given by 
(6.3), and all the local equilibrium contributions are negligible since they 

Jo The index P denotes that this quantity depends on the Prandtl number P. 
1i This is clear since, according to Section 5.2, branch points can only occur for R ~< 0 while 

the instability arises at R =Re > 0. 
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stay finite. To be more quantitative, we introduce the 
sionless parameter 

positive dimen- 

R ~ 1/2 

Then, in the regime e,~ a~, the only mode-coupling coefficient (2.10), which 
contributes to the singular behavior of the correlation functions, is found 
with the aid of (4.10) to be 

T v  1 
A~ = - 2  P d2 (2n) 4 d2 ;Fp (6.8) 

where 

1 (t/2 
Fe = a- 7 3-~/2 W~({) 0~(~) d{ 

In terms of the dimensionless variables 

(6.9) 

~1 =Zl/d, ~2 = z2/d, ~ = rl]d 

v FpA 2 
"C-d2 ~ t 

a c 

(6.10) 

we thus obtain from (2.8), (2.9), and (6.8) for e~ac  

2 1)2 
S(rll, Z1, Z2; t) :" k B Cp KpG~(~, "[) Oc(~l ) 0c(~'2) p T c~ 2g2d7 

S'(rll, z, ,  z2; t ) = k s  cp v KpG~(~, r) Oc(~1 ) We(~2 ) 
p o~gd 3 

V(rll, z, ,  z2; t ) = k ~ T d K e  G~(r ~) Wc(ffx ) Wc(~2 ) 
P 

(e<~ac) 

(6.11) 

where 

~p 
Kp - Fp A 2a2 (6.12) 

and 

1 e g2v ~ e-  (a-- ac)2X 
G~(~, "c) = ~-~ fo aJ~ da (6.13) 
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It is this function Q(~, z), appearing in all three correlation functions 
(6.11), that diverges in the limit e-~ 0 for all distances ~ and times z. 

Inserting (6.11) into (2.11), (2.12) one can straightforwardly compute 
M(sl)(rl, tl; r2, t2) in the limit R ~ Re_. Therein the contribution from the 
viscous modes, i.e., ~, is negligible, since it is a local equilibrium quantity 
and thus stays finite as R--* R~ . Even the fast part of the correlation 
matrix, which is generated by the sound modes (and which will be con- 
sidered in paper III), stays finite at R = Re, since all the sound modes have 
a positive real, i.e., a damping, part. Therefore the fast part of M does not 
contribute to the singular behavior of the hydrodynamic correlation matrix 
near the instability either, and we may drop the superscript (sl). For 
general distances and times, the expressions thus obtained for 
M(r~, t~ ; r 2, t2) in the limit R --* R~_ are still rather lengthy and will not be 
given here. Instead we will restrict ourselves in the following to a discussion 
of the large-distance behavior as rll ~ oo. 

Using that the integrand in (6.13) is sharply peaked around a~ one can 
straightforwardly evaluate the function G~(~, ~) for large horizontal distan- 
ces ~ >> a C ~. The result is 

where (2o) 

(4) Z~(~,r)cos ac~- ( ~ > a g  1) (6.14) 

foO e --a2z 
Z~(d, z) = 1 e-~2~ e2 cos a~ da 

- rc -oo a2+ 

= 2-~1 I e < erfc (e ~ - -  ~ - ~ )  + e~ erfc te  x/-~- + ~ )  ] (6.15) 

and 

2 Io~ erfc(x) = 1 - ~  e -t: dt (6.16) 

is the complementary error function. 
Inserting now (6.11) and (6.14) into (2.11), (2.12) and keeping only 

the divergent terms 12 we obtain 

Mrv(r l ,  tl ; r2, t2) 

= ke PT O~2g 2 Kp \2~)( ac ~1/2 Z~(~, v)cos ( a c ~ - - 4 )  Oc(~'i)Oc(~2) 

12 From (6.15) follows that Z~(~, z) = O(1/e) while (~?/~) Z,.(~, z) = O(1). 



480 Schmitz and Cohen 

Mru( r l ,  tt ; r2, t2) 
T v / a \ 1/2 

= k B - - - ~  Kt, a, ~'~ p ~2rc~) Z~(~,z) 

x cos a~.O~((1) W~(~z) e= 

+s in  a , . ~ - ~  O~(#1) -~2  fit j 

M. , ( r l ,  tl;  r2, t2) 

x a~2W~.(~)W,.(~2)eze~q - d ~  d ~  - r " t l t + a ~ s i n  a , ~ - ~  

x W,.(~)--57-Ce r l l - - - W c ( ~ 2 ) f l l e  ~ (e~ac;~>>a~: ~) 
. Z d ~ [  

(6.17) 

From (6.17) one can derive, in particular, expressions for short  and 
long times t =  t ~ - t 2 > ~ 0  by evaluating the function Z~(~, z), defined in 
(6.15), asymptotically. Assuming that ~ > e  -~, one finds (2~ 

z~(~, ~)= 

1 
- e  < 

~'-2 c~ e~ (roT) 1/~ \ 3  e,] 

(6.18) 

For  short times, i.e., r/~ < 1/~, the correlation matrix is thus independent  of 
~,~3 and its long-distance decay in horizontal  direction can be characterized 
by a dimensionless correlat ion length 

1 A 1 
- - -  (6.19) 

. c  

where (6.7) has been used. The tong-time behavior,  on the other  hand, can 
be described by a dimensionless correlation time 

1 A 2 1 
(6.20) 

z c = ~  = 2 I_R/Rc  
a c 

Both, {,. and zc, go to infinity as R approaches R~.. 

13 The condition Ue< 1/e means physically that the times considered are much smaller than 
the time ~2 it takes an initial fluctuation, localized in the origin, to spread over the dis- 
tance ~. Hence one should expect to find just the equal-time correlation matrix. 
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It is clear from the derivation that expressions of the form (6.1I) and 
(6.17) for the correlation matrix near the instability hold for arbitrary 
boundary conditions, as long as the visco-heat modes have a discrete spec- 
trum. For the temperaturea-temperature correlation function this has first 
been shown by Zaitsev and Shliomis. (9) These authors have also obtained 
the formulas (6.19) and (6.20) for the correlation length and the correlation 
time, respectively. Without reference to any specific boundary conditions, 
the values of the constants Rc, ac, A 2, Fp, Ke and the functions W~(~), 
O~(~) are still undetermined, however. 

Finally, we quote the numerical values of these quantities for stick 
boundary conditions. They are 

R,.~ 1707.762, ac~3.117 

38.3 1 + 2.03P 
A2~ 1.46, F p ~  Kp,~ 0.0706 

1 + 2.03P' 1 + 1.96P 

W,.(~) = Np[cos qo~ + 2 Re A + cos q+ ~] 

O,.(~)= a<7-~-~j W<.(~) (6.21) 

qo~ 3.974, q+ ~2.126 + 5.195i 

A + ~ (--3.077 + 5.195i) x 10 -2 

1.25 
N 2 ~ l  + 1.96P 

While most of these values have been obtained before in the literature, (H'19) 
the values of Np and Kp are new. For comparison we quote here also the 
results for slip boundary conditions(l~ 

27 4 
R, =--~- ~ ~657.51, ac =----=~ 2.221 

,/2 
A2 4 3~ 2 14.80 3 

= - ~  1.33, F p -  Kp = ~4~0 .0154  
3 2 ( I + P j ~ I + P  ' 

W~(~) = N F cos ~ 

[ 2 d 2 ,~2 9 ~zawc(() 
@(~)=~ac--j(5), W,,(~') = ~- 

2 N ~ = - -  
3(1 + P) 

(6.22) 
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7. L I G H T - S C A T T E R I N G :  T H E  R A Y L E I G H  LINE 

As a second application of our theory for the slow part of the 
correlation matrix developed in Sections 2-4, we compute the Rayleigh line 
in the light-scattering spectrum for a number of examples. In simple fluids 
the spectral intensity of the scattered light is proportional to the dynamic 
structure factor S(k, co), defined by (2'5) 

1 ~ ~ f W2 
S(k, co)= , dr1 ~lv ~ dr2 dt l 

V s "ls ~Vs ~-- Ts/2 

f Ts/2 
dt2 exp{ - i lk" (r I - r2) - co(t 1 - t2) ] } 

X ,J_ Ts/2 

x Mpa(rl, t l ; r2,  t2) (7.1) 

where 

Mpp(r~, t l ;  r2, t2)= (6p(rl ,  t l)6p(r2, t2))s~ (7.2) 

is the density-density correlation function in the stationary state. In (7.1) k 
and co are proportional to the transfer of momentum and energy, respec- 
tively, from the fluid to the light beam. ~2) Finally, Vs is the scattering 
volume and Ts is the scattering time. We have assumed in (7.1) that the 
scattering volume is uniformly illuminated during the scattering time and 
that no light scattered from regions outside V, will be detected. 

For wave vectors k and frequencies co in the hydrodynamic regime we 
may use in (7.1) the result for Mpp(r l ,  t l ; r2 ,  t2), as obtained from a 
hydrodynamic calculation. The density fluctuations 6p(r, t) can then be 
expressed in terms of the pressure and the temperature fluctuations via the 
linearized thermodynamic relation 6 p = p Z r 6 p - p ~ 6 T ,  where ZT is the 
isothermal compressibility. 

Here we restrict ourselves to the Rayleigh line of the light-scattering 
spectrum, which is generated by the slow part of the density-density 
correlation function only. Using (2.11) and (2.12) one obtains for the slow 
part of Mpp: 

M ~ ( r l ,  t~ ; r 2, t2) 

= p2~2M~(r l ,  tl ; r2, t2) 

=p2~ 2T2--~ X ~ S ( r l l ' z l ' z 2 ; l )  ( t>/O) (7.3) 
p [S ( r l l , z2 ,  z l ; - t  ) ( t < 0 )  

where S(rtl, z l ,  z2; t) is given by the first of Eqs. (2.8a), and (2.13) has been 
used. In (7.3) we take the values of the average quantities in the center of 
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the scattering volume, i.e., we choose the z coordinate of the center to be 
the reference point R~. As was pointed out in Section 2, Eq. (7.3) is only 
valid, if rl and r2 both lie inside a horizontal fluid layer around Rz of 
height lo'~Lv within which the spatial variation of the average quantities 
can be neglected. In order to ensure that only correlations between such 
points are probed in (7.1), we will assume in the following that kz>lo 1. 

The dynamic structure factor of the Rayleigh line, SR(k, co), is then 
found by inserting Eq. (7.3) into (7.1). The expression simplifies when the 
scattering volume and the scattering time are chosen such that the two 
sides of the horizontal cross section of the scattering volume are much 
larger than kill, where kit = (1 - ezez)" k is the horizontal component of the 
wave vector, and Ts>>co -1. Under these conditions we can set 
approximately T, = oo and integrate over the whole x, y plane. Thus we 
obtain 

SR(k, co)= p2~2 T2 1 ~&+ r~/2 ~R~+ L,/2 
d z  1 d z  2 

'~C p ~ ~ Rz Ls/2 ~ Rz -- Ls/2 

• e -i~(z' - ~:)S(kll, Zl, z2; co) + c.c. (7.4) 

where Ls is the height of the scattering volume, c.c. denotes the complex 
conjugate, and S(kll, zl, z2; co) is defined by 

;o f V3(krl, zl, z2; co) = dt drlr e-i(kll. ~ll-o,,) S(rll, zl ' z2; t) (7.5) 

where the rll integration is over the whole x, y plane. 
Also of interest is the total intensity 

1 o~ 
I(k) =~-~ f ~  S(k, co) dco (7.6) 

since it measures the density-density correlation function at equal times. 
Inserting, namely, (7.4), (7.5) into (7.6) one finds for the total intensity of 
the Rayleigh line: 

I"(k)=P2~ T21--Ys -~s fRz+Ls/2Rz Ls/2 dzl [,~+rs/2 dz2 
Cp ~ Rz -- Ls/2 

• e -~k~(~'-~ f drll e ~kll-,llS(rll, Zl, z2; 0) (7.7) 

In the following we will discuss the expressions for the shape and the 
intensity of the Rayleigh line for a few cases as obtained from Eqs. (7.4), 
(7.5), and (7.7) by using the results for S(rlt, zl,z2; t) derived in the 
preceding sections of this paper. 
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(1) If the scattering volume is placed well inside the bulk fluid, away 
from the boundaries, and if the wave vector k is such that k ~ ~.- 1, where 2 
is the characteristic length defined in (3.11), we may use the formula (3.8) 
for S(rll, zl, z~; t), with s+ and s_ given by (3.12). Assuming furthermore 
that Ls>>k71, one can replace the bounds of the integrals over zl and z2 in 
Eq. (7.4) by + ~ .  Then one finds 

SR(k, c0) = kBp2Tz~cT- 1 2Drk 2 
7 D2.k4+o92 

+ k s p T (  dT)2 2v ( 1 1 ~k~ (7.8) dz} v2--D2T\)D2Tk~+c92 v2k4 + (D2/ 

The two terms in (7.8) arise from the local equilibrium part and the mode- 
coupling part of S(rll, z 1, z2; t), respectively. The local equilibrium part is a 
Lorentzian line, centered at o~ = 0, with half-width DT k2. It is just the local 
form of the central line from the Landau-Placzek formula. ~3) The mode- 
coupling term is not Lorentzian and anisotropie in k space. It is of second 
order in dT/dz and independent of the gravity field, owing to the fact that 
the spatial distances, probed by the wave vectors considered here, are much 
smaller than the characteristic length 2. The total intensity is 

( 2 1 
IR(k)=kap2TZT?-- I+kBpT ~ (7.9) 

7 \ dz/  Dr(v+Dr) k 4 

where we have set ~H = kll/k" It follows from (7.9) that the local equilibrium 
part of IR(k) is independent of k. This is so because the equal-time 
correlation matrix in equilibrium is short range,~l) so that only white noise 
can be detected by wave vectors from the hydrodynamic regime. The 
mode-coupling part, on the other hand, is proportional to k - 4  reflecting 
the long-range nature of the nonequilibrium contribution to the equal-time 
correlation matrix [cf. Eq. (3.13a)]. The results (7.8) and (7.9) have 
already been derived in Ref. 6 and, for the special case k~ = 0, in Ref. 7 by 
methods different from ours. We remark that the mode-coupling correction 
to the Landau-Placzek expression should be observable for the wave vec- 
tors used in normal light-scattering experiments.14 

14Insert ing the pa ramete r s  for water  under  no rma l  condi t ions  (12) and  set t ing d T / d z =  
50 K cm-~,/~ll = 1, one finds for the ra t io  of the mode-coup l ing  to the loca l -equi l ibr ium con- 

t r ibut ion  to the Rayle igh line 

SMC(k,  0) (~ dT/dz) 2 fi~ 1 v IHC'(k)  2 5 • 10 ~3 cm 4 • 1 

sL'E'(k, 0) ---- pZT[(~? -- 1)/~] v D T k  --~= v qYDr ~ ~ " k 4 

0.3 k = 3000 cm - 1 

1.6 for k = 2000 cm -~ 

25 k = 1000 c m -  
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(2) Using very small wave vectors, i.e., k < 2  -1, one can probe 
correlations between points with distances so large that gravity and 
possibly boundary effects can no longer be neglected. In this regime, the 
mode-coupling contribution to the structure factor SR(k, co) is many orders 
of magnitude larger than the local equilibrium contribution, is As in Sec- 
tions 4-6 we will restrict ourselves here to systems for which d~lo~Lv. 
Furthermore we choose R ~ = 0  and L s=d so that the whole layer is 
illuminated by the light beam. Inserting then Eqs. (2.8)-(2.10) into (7.4), 
(7.5) and expressing the result in terms of the dimensionless quantities 
given by (4.10), we find after a straightforward calculation 

v pT 
SR(k, co) = 2k8 ~ - - -  

7 -2 a .  - ie5 
~- c.c. (7.10) 

where we have introduced the scaled frequency 

d 2 
~ = - - c o  (7.11) 

V 

and the oscillator strengths ~ defined by 

~(kz;a,R)=~gg,~(kz) ~m a,,+a,, ' 

with 

and 

- - O m ( - k z )  (7 .12)  

1 [1/2 [ O n m m - ~ m n O m ] d ~  (7.13) 
~'~nrn ~--- ~a  2 ~_ 1/2 

O)n(kz)= ;1/2 e-ik~ar d~ (7.14) 
- 1/2 

In (7.12) we have neglected the local equilibrium contribution. Inserting 
(7.10) into (7.6) one finds for the total intensity 

v 2 pT-- 
IR(k) = k~--~---5- ~ ~ + c.c. (7.15) 

a g -  -2 

15 Since the eigenvalues s+ and s , defined in (3.5), are still of the order vk 2, Drk 2 when k 
decreases, we may use the ratio from the previous footnote, which was based on (7.8), for a 
rough estimate. Putting as a typical value k = 30 cm -1 (recall that 2 = 0.03 according to 
footnote 5) one obtains 
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For later use we introduce also the normalized structure factor 

v Sn(k, 09) 
Sg(k, oh) = d2 IR(k) (7.16) 

which will be plotted in Figs. 3 and 4 below. With (7.10) and (7.15) we find 

2 (Re ~ ) ( R e  a , )  - (Im ~)(o3 - Im a~) (7.17) 
S'R(k, ~5) E ,  Re ~ ,~ (Re a~) 2 ~ (co - Im a,)  2 

(3) At the convective instability ( R =  Rc) and for a wave vector k, 
the horizontal component of which has the critical magnitude ktl c = aJd, 
the structure factor (7.10) diverges for all co ("critical" opalescence). The 
reason for this singularity is the divergence at a = a C and R = Rc of the 
oscillator strength ~(1) corresponding to the critical mode a(1)(a, R). Near 
the instability point one has according to (6.3) and (6.7) 

A 2 

a(ll(a,R),~F~-s-f [ ( a -  a J  + ~ 2] (~-~O,a~a~) (7.18) 
ac 

so that 

~ 1 )  1 1 O c(-k~) (e O, a~a~) (7.19) =2 Ke (a - ac) 2 + ~2 0c(kz) 

where also (6.9) and (6.12) have been used and where 

~)c(kz)=f 1/2 e ikzd~Oc(~) (7.20) 
~-- 1/2 

The explicit expression for the function Oc(kz) is lengthy, but can 
straightforwardly be evaluated from the results given in (6.21) for stick 
boundary conditions. From (7.10) follows that near the instability point 
the dynamic structure factor has the form of a simple Lorentzian peak 

v p T  2a (~) 
SR(k, co) ~ 2kB ~ ~5- ~,~(1) (a(1))2 + (52 ( R ~ R c ,  a,~ac) (7.21) 

with a linewidth going to zero like a (1) and with a height going to infinity 
proportional to 1/(a(1))2. (22) 

(4) We have also computed the normalized structure factors 
SR(k, e3) in two stationary states away from the instability, characterized 
by the Rayleigh numbers R = 1000 (heating from below) and R = - 1 0  000 
(heating from above), respectively. In our examples we have chosen the 
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kz--O 
| 

~2 

lo 20 30 

q2 

l>G2 

(a) 

k~ -- d 

lo 20 30 

(b) 

Fig. 3. Normalized dynamic structure factor S((5) for P = 3 . 6 ,  a=4 .5553  and R =  +1000. 
The vertical wave numbers  are as follows: Fig. 3a, k~ = 0; Fig. 3b, k z = ~ / d .  
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o,o3 

o,o2 

j o,ol 

; 2'0 ~o 2~-~ & s & 9o~ 

(b) 

Fig. 4. Normalized dynamic structure factor S(~o) for P = 3.6, a = 4.5553 and R = - 1 0  000. 
The vertical wave numbers  are as follows: Fig. 4a, k~ = 0; Fig. 4b, k~ = ~z/d. Notice the different 
scales in Figs. 3 and 4. 
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Prandtl number P =  3.6 and the horizontal wave number a = 4.55531 in 
agreement with the choice made by Allain et al. (17'15) in their experiments 
on the propagation of the visco-heat modes. We have performed the 
calculations for kz = 0 and for kz = r(d. In Table II we give the numerical 
results for the eigenvalues an of the modes we have taken into account in 
the sum (7.12) and the resulting oscillator strengths o~. 

Figures 3a and 3b show SR(k, co) as function of 05 for R = 1000 and for 
k Z = 0 and kz = K/d, respectively. As follows from Table II, the line shape is 
dominated in both cases by the mode n =  1, so that the lines have 
approximately a Lorentzian shape with half-width al---4.14. On the other 
hand, the graphs for R = - 1 0  000, shown in Figs. 4a and 4b, are much 
broader. In the case kz = 0 one can easily distinguish two peaks that are 
symmetrically shifted away from 05=0. This kind of "second sound" 
phenomenon (23) is caused by the modes n = 1 and n = 2 which propagate 
for R = - 1 0 0 0 0  (see Table II). For k z = ~ / d  this effect is obscured, 
however, owing to the large contribution of the next mode, i.e., n = 3, 
which does not propagate. 

8. D I S C U S S I O N  

(1) Measurements of the light-scattering spectrum for small wave 
vectors k require small scattering angles due to the Bragg condition. (2) In 
praxis, there is a lower bound on k, depending on the smallest angle, for 
which one is able to separate the scattered beam from the incident beam, 
and on the wavelength of the incident beam. Using a laser beam with a fre- 
quency in the range of normal light, i.e., coi~3 x 1015 sec -1, one needs a 
scattering angle of the order 1 ~ to measure SR(k, co) for k ~ 2 0 0 0 c m  -1, 
which is a typical wavevector for which Eq. (7.8), i.e., the mode-coupling 
correction to the local equilibrium result, could be verified (cf. Foot-  
note 14). On the other hand, the results plotted in Figs. 3 and 4 hold for k 
of the order 30 cm -1. In order to verify these results experimentally, a 
reduction of the wavelength of the incident beam to the infrared or 
microwave regime seems to be necessary. Unfortunately most molecular 
substances absorb these frequencies. Nevertheless there may be fluids from 
which microwaves are scattered. Perhaps a heavy inert gas, like xenon, 
could be a candidate. 

(2)  As has been pointed out in Section5, the existence of 
propagating visco-heat modes has been established experimentally by 
Allain et a/. (17) However, these experiments have been performed only for 
Rayleigh numbers far beyond the threshold of propagation of the par- 
ticular mode that was excited, i.e., far beyond its branch point. When the 
squares of the measured frequencies of the waves (i.e., the imaginary parts 
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of the eigenvalues) are plotted against the Rayleigh number, they seem to 
lie on a straight line, as predicted by the parabolic approximation (5.1). 
For suitably chosen conditions on the horizontal wave number, more 
careful measurements should yield large deviations from the straight line 
near the propagation threshold, confirming the shift of the branch point 
from the value predicted by the parabolic approximation, owing to the 
avoidance of crossing. Moreover, the slope in the threshold would deter- 
mine the coefficient el in Eq. (5.2). Finally, the experimental observation of 
a "window of propagation" would be of special interest. Experiments near 
the threshold or within the "windows" are very difficult, however, since 
here the propagation is very small compared to the damping. 

(3) As already discussed in Refs. 9 and 10, the results for the singular 
behavior of the correlation matrix near the instability, presented in Sec- 
tion 6, cannot be applied to the immediate vicinity of Rc. The reason for 
the failure of the theory is that the magnitude of the fluctuations becomes 
larger and larger as R ~ R c, and hence the linear fluctuation theory, used 
in this paper, breaks down. To use the language of critical phenomena, our 
theory is just a mean field theory. Attempts to go beyond a mean field 
theory, by taking into account the fluctuations in a nonlinear w a y  (24) o r  

using renormalized transport coefficients,(1~ indicate that the region, where 
the mean field theory breaks down, is unaccessible close to Re, at least with 
the present experimental possibilities. 

(4) For wave vectors in the regime probed by normal light-scattering 
(k~2000cm 1), van der Zwan etal. ~25~ have also computed the dynamic 
structure factor of the Rayleigh line. They use a perturbation theory 
around equilibrium in the temperature gradient, taking explicitly into 
account the variation of the average quantities with position. This yields a 
line shape that is not symmetric in co. However, as the authors point out, 
this effect is unobservably small. To understand this better, we recall from I 
that for the slow modes the variation of the average quantities with 
position can be neglected for all wave vectors with kz >/o 1. Clearly, it can 
therefore also be neglected in normal light scattering, where even k~ ~> l o 1. 

(5) In the problems discussed in this paper, the condition k~>ld ~ 
was always satisfied, and the Boussinesq equations, derived in I, were suf- 
ficient for us to determine the slow modes. Nevertheless, there are 
situations where the spatial variation of the average quantities has to be 
taken into account explicitly, even for the slow modes. They occur in 
systems where d~  Lv ~> lo, so that modes with very long "wavelengths" (i.e., 
of the order Lv) are possible. In order to compute these modes, one has 
first to extend the Boussinesq equations. Deriving the correct extension of 
the Boussinesq equations from the full linearized hydrodynamic equations 
should be feasible with the methods developed in paper I. An interesting 
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application of these extended Boussinesq equations would be the 
calculation of the instability point in a Rayleigh-B6nard system where d 
can be of the same order as Lv. This would lead to a value of R c different 
from Rc = 1707.762, which is only valid for d~Lv.  
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A P P E N D I X  A 

In this appendix we derive the left eigenvalue equations for the visco- 
heat modes. To this purpose we consider the space of all vectors 

( r(~)~ (A1) u = \ v(~)/ 

where T(z) and v(z) are suitably often differentiable functions which satisfy 
the boundary conditions 

T = 0  

dv (A2) 
v=O, --~z=O (z= • 

T(z) and v(z) can be interpreted as the temperature and the z component 
of the transversal velocity field, respectively, of an arbitrary perturbation 
around the stationary state. Equations (A2) are then the boundary con- 
ditions used in the main text [cf. Eq. (4.11)]. 

Defining the operators 

= D ~  ~ (13) 

\ -~gk~  v~ ~ 

with ~ = k~ - d 2 / d z  2 and 

o=(; ;) ,A4  
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we can write the right eigenvalue equations (2.6) in the form 

~f.  R R (A5) U,  = s, D" U, 

Furthermore we write the normalization condition (2.7) as 

k 2 
(K" ULm, D " UnR)---- ~ (Snm ( a 6 )  

where we have set 

and introduced the scalar product 

(U1, U 2 ) : ~  d/2 [-T~T2 --/- v~v2] dZ (18)  
d/2 

for arbitrary vectors U 1 and U:. 
Multiplying (A6) by the eigenvalue s. yields 

k~ 6.m= (K L R L S.(-~)2 "Um, s . D ' U . ) = ( K ' U m , ~ f  "UR.) 

k: 
=s "It 5.m=(s*D'ULm, K ' U .  R) (A9) m (27C)2 

where we have used the boundary conditions and that K and D commute. 
Hence, the left eigenvalue equation is 

-i- L L &f " Um-- sm* D " U m (A10) 

where the adjoint operator Lf* has to be determined from the equation 

(K 'UI ,  ~ U 2 ) - -  (~cf*.U,, K'Ua) (All)  

for arbitrary vectors U1, U2 satisfying the boundary conditions. Integrating 
the left-hand side (1.h.s.) of (All)  by parts, using (A2), 16 one obtains 

~Lf*= [ d T  k: (A12) 
\ dz u v@2 

16 We require that the left eigenvectors obey the same boundary conditions as the right eigen- 
vectors. 
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Hence the left eigenvalue equations (A10) read explicitly 

-c~g {T~,k,,n(z)'] * (T~'k"n(z) ~ (113) 
l dTk2  \ VLk,,n( Z ) ] = S ;~ \ d z  " v~ \~Vli'kll"(Z)] 

We remark finally that (A13) is still correct when the stick boundary con- 
dition dv/dz=O (z= +_d/2) in (A2) is replaced by the slip condition 
dav/dz2= 0 (~ = +d/2). 

A P P E N D I X  B 

In this appendix we show first that the components T~.k,n(z ) and 
vIGHn(z) of the left eigenvectors of the visco-heat modes are proportional to 
O*(() and W*((), where On(() and W.(~) are the dimensionless functions 
that have been introduced by (4.6) and (4.7). We have used this property in 
deriving Eq. (4.9). Then we will define the projection operators N. 
corresponding to the eigenvalues a n, and finally we will prove two simple 
properties of the eigenvalues that have been used in Sections 5 and 6. 

Defining the function W,~(() by 

v~,k,,n(z) = W~(~) (B 1 ) 

we obtain from the second equation in (A13), 

v 1 
T~klln(Z) = d 2 (dT/dz) a 20nc(~) (B2) 

where 

d~ - a * ) ( a 2 -  ff--~2~2) W,(~) (B3) OL(~) = ( a2 --~-~-7 

Inserting (B2) into the first equation in (A13) yields 

a 2 -  Pa* L 2 L O,(~)= Ra Wn(( ) (B4) d~ 2 

The last two equations for O~ and Pr are identical to Eqs. (4.8), provided 
that an is replaced by a*. Furthermore, the left eigenvectors obey the same 
boundary conditions as the right eigenvectors. Since the coefficients a, R, 
and P are real it follows that 

o~ = cO*, w~ = cW*. (Bs) 
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where c is an arbitrary constant. Combining (B1), (B2), and (B5) the 
statement made above follows. 

In order to define the projection operators ~ we use a notation 
similar to that of the preceding appendix, but for the dimensionless quan- 
tities. Thus we set 

U = (On(~)~ (B6) 
~ \ 

and write the eigenvalue equations (4.8) and the normalization (4.9) as 

~r = anD" U~ (B7) 

(K.U*,  D.U~)=6~m (B8) 

where now 

d2 Ra 2 ) 
1 ( 2  __ ~..~) d2~ 2 
y a  

s = (B9) 

--1 (a2--~j 

and 

D = d2 , K = (B10) 
0 a2 -- ~~  

The dimensionless operator s is self-adjoint in the scalar product (BS). 
The eigenprojection operator ~ is defined by 

~nU = u, Un (Bl l )  

where U is an arbitrary vector that can be expanded in terms of the eigen- 
vectors Um as 

U = ~ u m U m  (B12) 
m 

with expansion coefficients Urn. With the aid of (B8) we obtain 

u,, - (K. D .U* ,  U)  (B13) 
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Inserting (B13) into (Bll) yields 

(~.u)(~) = f P-(~' ~') u(~') (BI4) 

where the integral kernel P.(~, ~') is defined as the dyadic 

P.(~, ~')= U.(~)K. D �9 U*(r (B15) 

Inserting (B6) and (B10) into (B15) we find explicitly 

P W 1 d 2 (B16) 

Finally we prove two simple properties of the eigenvalues a, used in 
Sections 5 and 6. Following Ref. 14 we write (4.8) in the form 

( d2 )2 a 2 - d Z ) w , = - O , +  a 2 -  W, 

(B17) 

Per , O , = - R a 2 W , + ( a 2 - ~-~2~ 2 ) O ~ 

Multiplying the first equation by W* and the second equation by O* and 
integrating over ~ from - 1/2 to + 1/2 yields 

~'1/2 f 2 d2 
a. 2_ 1/2 W* ~a - - ~ }  W~ d~ 

~1/2 1/i / f 2 d2~ 2 
= - i / 2 W * O . d ~ + f _  2W*~a - - ~ )  W.d~ 

(B18) 

Pa. -_ 1/2 0 " 0 .  d~ 

= - R a 2 j  O* W., d~ O* O, d~ 
-1/2 -[- "~ 1/2 

Now take the complex conjugate equations of (B18) and subtract them 
from (B18). This yields 

(fTn--{Tff) l/2 Wff a 2 - - - ~  W n d ~ -  -- _l/2 
(B19) 

~,/~ i ~/~ P(a,,--a*) _,/20*Ond~= - R a  2 -1/2 (O*" W " - O ' W * )  d~ 
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where also the boundary conditions have been used during partial 
integration. Eliminating the r.h.s, between Eqs. (B19) one finds 

(o=-o-*) _1/2 IW=l ~ - ~ -  +~2Sa410=l 2 dC=0 (g20) 

Since the integral is positive for all R > 0 it follows from (B20) that o-, = 0* 
for R > 0. In other words, the eigenvalucs are real if the system is heated 
from below, or, propagation can only occur when the fluid is heated from 
above. 

Similarly, one can take the complex conjugate equations of (B18) and 
add them to (B18). Then one finds 

( a . + a * )  1/2 W* a2-~-~7 W.d~ 

(.1,'2 / 2 d 2 ,~2 |~/2 (W*O=+O*W=)d~+2| W* W=d~ --,/2 --I/2 ~a --~5) 
(B21) 

~1/= O*O= d~ 
P(a ,  + 0 * ) .  1/2 

11/2 (O,W=+W,O=)d~+2~ 1/2 ( d2) =-Ra2 _1/2 ._1/20,* a2--~-~ O=d( 

Multiplying the first equation of (B21) by Ra 2 and subtracting it from the 
second one finds finally 

(o=+~*)~ 1/2 IW=12+7 - -~  -Rh-~a ~1~ d~ 

~1/2 1 d 2 dO= 

The integrals in (B22) are both positive if R < 0. Hence it follows that 
o= + o* > 0 for R < 0. In other words, the real part of a= is positive if the 
system is heated from above, or, the system can become unstable, only 
when it is heated from below. 

A P P E N D I X  C 

In this appendix we give expressions for the quantities a=., a=~, and 
Rnc that are used in the parabolic approximation (5.1). o.H and a=~ are 
defined to be the solutions of the characteristic equations FE(o; a, R) = 0 
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and F~ R ) = 0 ,  respectively, for R = 0 .  To compute a,H and a~v 
observe first that the three roots of (4.14) in the right half of the complex 
plane are ql(a)=ia ,  q z ( a ) = ( a - a 2 ) l / 2  and q 3 ( a ) = ( P ~ - a 2 )  1/2. Since 
Q1 = 0  and Q2 =o- it follows that the characteristic functions FE(a; a, 0) 
and F~ a, 0), respectively, factorize, e.g., 

Fe(a; a, O) 

= P ( P -  l)a cos " q2 cos sin ~ - -  ql sin ~- 2 3 

= F~(a; a)" F~(a; a) (Cl)  

Setting F~(o-; a) and F~ a) equal to zero yields q~3 --= n~ (n = 1, 2, 3,...). 
This leads to the eigenvalues 

1 a,H(a) = fi ( a2 + nzTr 2) (n = 1, 2, 3,...) (C2) 

Setting L- . o . Fv(a,a  ) and Fv(a, a) equal to zero yields q .2=b .  (n=  1,2,3,...) 
where b. is the nth positive solution of 

b a 
b t a n  ~ + a t a n h  ~ = 0 (n = 1, 3 , . . )  

b _ a coth ; = 0 b cot (n=2 ,  4,...) 

(c3) 

The corresponding eigenvalues are 

a.~(a) = a 2 + b] (n, 1, 2, 3,...) (C4) 

Looking at the normalized eigenfunctions (4.10) in the limit dT/dz ~ 0 it is 
easy to identify a . .  and anv as the eigenvalues of the heat and viscous 
modes, respectively, in equilibrium for stick boundary conditions. 

To determine R.c(a) exactly one can set a = 0  in Eqs. (4.14)-(4.16) 
and solve the characteristic equations Fe(0; a, R ) =  0 and [e(0; a, R ) =  0 
numerically for R. Alternatively one can use an approximate expression for 
R.c(a) that has been derived by Chandrasekhar ~ using a variational 
principle: 

( n2Tc2 + a2) 3 [- n2/r2 1-1  
Rnc(a) ~ -~- k 1 -- 16 (n2~ 2 + aZ)Z p.(a)j (C5) 
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where 

p, (a)  = 

a cosh2(a/2) 
(n=l ,  3,...) 

sinh a + a 

a sinh 2 a 
( n = 2 ,  4,...) 

sinh a - a 

(C6) 

The accuracy of (C5) is around 1% or better for low n and the values of a 
in the range 1 ~< a ~< 10 that have been used in Fig. 1. 

A P P E N D I X  D 

In the last appendix we illustrate the formal expansions (5.2) and 
(5.3), which have been proven by Kato, (18/by deriving explicit expressions 
for the eigenvalues ~, and the eigenprojections ~, near a branch point for 
slip boundary conditions. For slip boundary conditions the eigenvalues of 
(4.8) are simply (8) 

P + I  P - 1  
~ n - + ( R )  = - - ~  (a  2 + n2~c 2) 4- ~ (a 2 + n2~ 2) 

I 4P Ra 2 ] 1/2 
• 1 + ( p _  1) ~ ( a2~7 ~2 )3  j (D1) 

while the components of the eigenvectors are 

O.+ (~) = N,,_+ (a 2 + n2~ 2 - -  a n  + )(a 2 + n2rc 2) I~(~) 

W~-+ (~)= N,-+ I ,(~) 
(D2) 

where Nn+ is a normalization constant and 

fcos nx ~" (n = 1, 3, 5,...) 
In(~) =/ .s in  nzc ff (n = 2, 4, 6,...) (D3) 

Using the identity 

P (a 2 + nZrc2) = 1 (D4) 
Ra 2 (a 2 + nZx 2 - o-n+ )(a 2 + nZrc 2 - cr,~_ ) 

which follows immediately from (D1), one finds from (4.9) for the nor- 
malization constants 

2a2 a2 -~  F /2~2  - -  O"n T 
= - -  (D5) 

N~+_ + a2 + n27"c2 an+ - -  f i n -  
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The modes (n+)  and ( n - )  given by (D1) have a common branch 
point at 

(P-- 1)2 (a 2 + n2~z2)3 

R"~ = 4P a 2 
(D6) 

P + I  
~no = - 2 T -  (a2 + n~rc~) 

Inserting (D6) into (D1) we can rewrite the eigenvalues in the form 

an+ (R) = ano -t- a l ( R  - -  Rno) 1/2 (D7) 

where 

a 

0~1 ~" [p(a 2 + n2rc2)] i/2 (D8) 

Equation (D7) has the form of a Puiseux series [cf. Eq. (5.2)] with coef- 
ficients ~/ that vanish identically for j >  1. This simplification does not 
occur for more general boundary conditions. However, in the general case, 
the eigenvalues have still the form (D7) if one is close enough to the branch 
point, as has been shown by Kato. 

Inserting (D7) into (D5) yields 

P -  1 a2 1 0 2 

N]+ = + _ - - ~  a~(R_Rno)U 2 F a2+nZrc2 (D9) 

Thus, the eigenvector given by (D2) diverges like ( R - R o )  -1/4 as the 
branch point is approached. Inserting (D2), (D7), and (D9) into (B16), 
and neglecting terms of the order ( R - R o )  1/2, we obtain after a 
straightforward calculation for the kernel Pn(~, ~') corresponding to the 
eigenprojection operator ~, 

where 

Pn+(~, ~') +_(R-Rno) 1/2 Nno(~, ' i ~, _ = ~ )+TPn0(~ ,  ) +  " ( D 1 0 )  

t P--1  N,o(~, ~') = P - -  1 a 2 q- r/2TC 2 - -  1 2P 

2P ~1 2P 1 
P -  1 (a 2 + rt2TC2) 2 

x i=(~) ]~(r 

\ 
- -  (a 2 + n ~ 2 ) 2 ~  

J ! 

(Dl l )  
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and 

P,o(~, ~ ' )= 2 (g  01) I,(~) I,(~' ) (D12) 

From the orthogonality property of the functions I,(~) follows that P,0 is 
the total eigenprojection kernel corresponding to o,0, i.e., of the product 
space spanned by the eigenvectors of the modes o , + ( R )  and o ,_(R)  in the 
limit R ~ R,0. Furthermore one verifies easily from the special form of the 
matrix appearing in (Dl l ) ,  that the kernel N,o is nilpotent. The results 
(D10)-(D12) are an example of the more general statement cited in 
part (ii) of Section 5.4. 

Using (D7) and (D10) we show finally that the operator &r defined in 
(B7), and the corresponding time-evolution operator ~//(~)=exp(-~9ov) 
(r > 0) are finite if there happens to be a branch point at the value of R 
considered. To this purpose we use the spectral representation of the 
integral kernels L(~, ~') and U(~, ~') corresponding to ~ and ~//, i.e., 

L(~, r162 P.. ) 
" '~ (D13) 

U(~, ~'; "c) = Y' Um(~, ~")= D ' ~  (e . . . . .  P,.+ +e . . . .  P., ) 
m m 

If there is a branch point at R = R,0, we compute the nonanalytic part of L 
and U by setting first R = R,  o + e, e infinitesimal, using (D7) and (D10), 
and taking then the limit e ~ 0. This yields 

L((,~')=D'(o.oP.o+2cqN.o)+ ~ Lm 
m ~ n  

(D]4) 
U(~,~;r)=D'(P.o-2~lN.or)e-~'~~ ~ U~ 

r r z # n  

The last equation implies that in a branch point there are generalized 
eigenmodes that do not evolve exponentially with time ~, but like ~e -~"~ 
This behavior is similar to the aperiodic limit case of a damped harmonic 
oscillator. 
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